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ABSTRACT

Very often, populations exist that, logically, should satisfy linear

stochastic ordering requirements. For example if a mechanical device is

improved through N stages, the corresponding survival functions should

be linearly stochastically ordered. Nevertheless, estimates may not re-

flect this stochastic ordering because of the inherent variability of the

observations.

-1ere- v - characterize6the maximum likelihood estimates of the survival

functions subject to linear stochastic ordering requirements. - shw-

estimates may be expressed in terms of the well-known Kaplan-Meier product
.s

limit estimates We- also give,kan iterative algorithm which we show must

converge to the correct solution that depends only upon solving the pair-

wise problem.

Finally we consider an example concerning survival times for people

with squamous carcinoma in the oropharynx when classified by degree of

lymph node deterioration at time of discovery.
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1. INTRODUCTION.

Often one wishes to estimate the survival functions (1-cumulative

distribution function) of populations from possibly censored data when

nothing is known concerning the functional form of the survival functions.

Appealing estimates in this situation have been obtained by Kaplan and Meier

(1958) and are usually referred to as Kaplan-Meier product limit estimators.

Although Kaplan and Meier restricted themselves to discrete distributions,

Johansen (1978) has shown that the product limit estimator is a maximum like-

lihood estimator (mle) in the class of all distributions under the generalized

maximum likelihood framework developed by Kiefer and Wolfowitz (1956).

Many times one may have a situation where, logically, distributions

must be stochastically ordered. For example, if a mechanical device is

improved, the probability of survival past any given time

for the improved device should not be less than that for the original

device. In this situation, it seems reasonable to require that estimates

of the survival functions should also satisfy this stochastic ordering.

Brunk et al. (1966) have given mle's for two stochastically ordered cdf's

for uncensored independent random samples. Dykstra (1982) has considered

this problem for the case of right censored data and has given the riie's

in the form of Kaplan-Meier product limit estimators with modified data.

In this paper, we are able to find the mle's of Na2 survival functions

when a linear stochastic ordering exists among them. While the

solution has a nice characterization,obtaining the actual estimates is

quite difficult. An iterative algorithm depending only upon the solution

to the pairwise problem is given and is shown to converge to an actual mle.
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2. THE PROBLEM

We shall assume that we have independent random samples, possibly with

right censored observations, from N discrete populations. The N > 2 popula-

tions are assumed to be stochastically ordered, so that the corresponding

survival functions satisfy

st st st
(2.1) P 1 P2 > ... >

st
(We say PI Z P if P i(t) > P (t) for all t.) The problem is to find

nonparametric mle's of the survival functions subject to the constraints in

(2.1). We will without loss of generality (WLOG) assume that PI1 (0)

P2(0) = ... = PN (0) = 1, so that all observations are positive.

Complete observations (failures) occur on a subset of the times

S1 < S2 < ... < Sm  (S o =0,Si+ 1 =S). The number of failures from the 3' th

population which occur at time S is denoted by dij. The number of

losses (censored observations) in the interval [SVS j+I) from the .th

population is denoted by 2iJ" We assume the A i losses occur at times
(iJ)

, r =l,', ij, where these censoring times are fixed. (The samer 'i

rule's would obtain for random censoring times which are independent of the
m

times of failure.) Let n E (di +J. ) denote the number of items
ii r=3 ir ir

from the i population surviving to just prior to Si. We have assumed

that our survival functions are discrete, but this is not really necessary,

as one may argue in the context of generalized maximum likelihood (see

Johansen (1978)) that our estimates need place probability only on those

timepoints at which observations occur.
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3. REDUCTION OF THE PROBLEM.

Based on the notation in Section 2, the problem is to find survival

functions P, P...PN which maximize the likelihood

(3.1) i=llfr= l (i) ) m _P( 0)_Pi(Sj)] d i  i fJ'

j r = r=l P.r

subject to the constraints

(3.2) P.(t) P (t) Vt, i =I,' ,N-I.
Si+l

For a given set of survival functions PI'*"" 'N satisfying (3.2),

we note that the likelihood cannot be decreased and (3.2) cannot be vio-

lated if we replace P (t) by a discrete P'(t) which has possible
1

jumps only at S,.-,S and is such that PI(S ) P (Sj). If we now

replace P2 (t) by P'(t) defined to have possible jumps only as

Sl-",S and V' (S) P (S ), the likelihood cannot decrease and (3.2)
m 21j 21'

cannot be violated.

Continuing this reasoning, we see it will suffice to maximize the

expression

N m d £1 [11Pi (SJ-1l) -P i(S)] i  P (Sj) 1

i=l j=l

subject to P i(S j ) 2 P i+l(' j) VJ, i =1,'",N-1 among those survival

functions which place probability only at the points SIS 2'"s m .



(We note that maximum likelihood estimates need not be uniquely defined

if the last observation from a population is a loss. We will avoid this

ambiguity by requiring our maximum likelihood estimates of the survival

functions to be as small as possible.) Equivalently, we wish to maximize

N m P(S) d rPi(S 1d. P (S  ""fl f~lu -ir -i4Pi-±sA- ..

P (S(

or letting PiJ = to maximize
j (S1 )

N m di ,I d..+.n 1 (1l-p'ij p i j 1P I J IJ

i=1 j=l r<j ir

J J
subject to ir ;_I P' Jr =1,,m; i =1,''',N-1.r1 P1i+l,r'r=1 r=1

m
Finally, recalling that n E (d i+ ), letting p iJ ln pi'

r=j

and considering the log of the likelihood, it will suffice to maximize

N m +(Pd )
(3.3) f(pl,' ',pN )  = E E d in(l-ep ij )  (n di=l J=l d i (nJ-j)J

subject to the constraints

J J
(3.4) p Pir P i+l,r' 0 P iJ2

r=l r=1

for j l,''',m; i =1,''',N-1.

The problem has been reduced to maximizing a concave function subject to

linear inequality constraints.
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Since we are maximizing a bounded concave function over a closed

convex region, there must exist a solution = (pl,...,'N ) which satis-

fies the constraints in equation (3.4) and maximizes equation (3.3). If

the active constraints (those where equality holds) of equation (3.4)

needed for a solution p were known, the number of variables could be

reduced by using certain of the expressions in (3.4) with equality holding.

Then expression (3.3) could be maximized by setting the appropriate partial

derivatives equal to zero, or by other means, and solving for the remaining

independent variables. Of course, determining which constraints are the

active ones is, in general, a very difficult problem. However, by noting

that certain equality constraints must hold, and then maximizing equation

(3.3) subject to an arbitrary fixed set of equality constraints in (3.4),

the general form of the solution p can be determined.

aI  aI  a2  a2

Notice that the constraints ElPiA E pi+l A1 E Pi E lPi+l, ..." '

a a a a2

iz= = can be written as Z i'i+lAP
21=1£= Aa 1+1

a2 % %
E +EPit E V so that an arbitrary p

=al+l =akl+l A=akli+l

need be present in at most two active constraints. Thus suppose P1.

is present in

b b-i

Pi+l,b E Pia - EaPi+lz

and

s s-1
Pi's = E=r PI-I, - Epr IL a ! J :b and r : J s.

. .... Aj
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Also suppose that dij > 0, and no other parameter equals pij" Then,

with appropriate substitution, the partial derivative with respect to

PiJ of equation (3.3) set equal to zero yields

dij

( )+ nj - dij = h - k(1-epi j )

where

+'b 
(Pi+l,b

=_ .. P~lb + (n i+l,b-d i+l, b )

and

Pisd. e

is + (n is dis
(l-e is)

Of course it doesn't matter which variables we choose as the depen-

dent variables. It follows that kij must have constant value for

a : j : b, providing di+l,j > 0, and hiJ must have constant value

for r ! J -C s if dij > 0. Solving the equation for p iJ yields a

solution of the form

jni -d i+kjhi\

(3.6) p* ln( i j .1ij n ij+k ij-hij "

Inspection of hij and kij will reveal that hij = kil j  if both

dij and d il, j  are positive. If dij = 0, that part of the objective

function (3.3) involving Pij is linear in piJ with nonnegative slope.
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Intuitively, p. should be as large as possible, and hence equal to zero

unless our constraints will not allow this. This would happen for example

if dll > 0, but d21 = d22 = 0. Then our constraints would require that

P = P and pl2  p22. We make these substitutions, and then solve by

derivative methods. We will show later that these solutions are still of

the form (3.6) for appropriate k.j, and appropriate definitions of inde-

terminate forms. Once d.. > 0, = 0 if = >j. Note that

if PiL = 0 and di = 0, then h is indeterminate, and hence does not

violate our claim of constant h over r : j 5 s. In any event, P
ij

can always be written in the form of (3.6) if indeterminate values are

properly defined.

Since the true solution, p, is given by p* for some set of active

constraints, p is necessarily of the form

ij n n lj-dl'. +kl ,1

nii +k I/
( .j)= 1 nl ikl i )

• -d.i +k i-k.il

(3.7) Pij = l nij+kij-kil j  2 : -

= nN-(N n{ NJ d NJ -Nl .
PN n - nNj-k N l , j

for appropriate values of kij and appropriate definitions of indeterminate

forms.

Now, the problem is to identify the kij 's. Heuristically, since the

ku's may be interpreted as playing the same role as the nij's, the esti-

mates are obtained by transferring unfailed items from one sample to the
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next stochastically larger sample, and then using the Kaplan-Meier (maximum

likelihood) estimate for each survival function. It will then turn out

that the k ij's will never be negative, which seems reasonable in light

of our one-sided restrictions. Of course probability could be transferred

from one population to several larger populations, but (3.7) indicates

that we do not need to think of things this way.

Even if the active constraints were known, a large number of simultaneous

nonlinear equations would have to be solved to find p. In the following

sections, the k ij's will be characterized and a method using this char-

acterization will be given to estimate the N survival functions, avoiding

the simultaneous nonlinear equations problem.
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4. KUHN-TUCKER CHARACTERIZATION

The characterization of the k Is requires some theory from convex

analysis. The problem of estimating N survival functions subject to the

stochastic orderings given by equation (3.2) may be written in terms of a

particular ordinary convex programming problem. An ordinary convex

programming problem is to find the vector p which minimizes a given con-

vex function f 0(p) subject to the constraints f (p) 5 0, j = ,...,n where

each f is a convex function on ]R . By letting f (p) = -f(p) from equa-

tion (3.3), and letting f. (p) = _Pi+l,A- =lA i=l,..-,N-1; j =1, ',m,

our problem is couched in the terms of an ordinary convex programming prob-

lem. We call (X = (l,)2,- ,n ) a Kuhn-Tucker vector if 1. 0 for

j =l,---,n, and if the unrestricted infimum of h(p) = f0 (p) + X1 f1 (p) +

.. + X f (p) is equal to the restricted infimum of f0(p). The following

nnp)i p.Thfolwn

theorem from Rockafellar (1970) characterizes Kuhn Tucker vectors, and will

be useful in characterizing the k ij's.

Theorem 4.1. Let X and p be vectors in e and en respectively.

In order that i is a Kuhn-Tucker vector for our problem and p is an

optimal solution, the following conditions are necessary and sufficient.

a. 0 , f( 0, andXfJ(p) = 0 for j = 1,''',n,

(4.1)

b. 0E [afo(p) +X 1afl(p) + - +X n2f n)]

where af (p) is the set of all subgradients of f at p.

Since the true solution and a Kuhn-Tucker vector must satisfy the
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subgradient equation in (h.lb), the general form of a Kuhn-Tucker vector

can be found for our problem using the general form of the solution given

in equation (3.7).

Theorem 4.2. If denotes the solution to the problem specified

in equations (3.3) and (3.4), then a Kuhn-Tucker vector corresponding to

the constraints f Z Pi+ll - p i 0 is given by

iJ = ij -k i 'j+ l  j < m

xij
lkim , J=m

when the solution p is specified in the form given by (3.7).

Proof: In the ordinary convex program characterization of our problem,

N m p..
f - E dij ln(l-e "i)+ (n ij-d ij)pi

I=l JZ_.l

which we want to minimize subject to the constraints

i i
f ijp(p )  £ i+l,- p iA : 0 for i=l,.--,N-l; j=l,..,m.

Notice that f0 (p) and f ij(p), i=1,...,N-1; J = ,. - -,m are differenti-

able functions of piI' for i' and J' so that equation (4.1b) can be

written in matrix notation. (Of course the n in Theorem 4.1 is now

m(N-1).) Equation (4.1b) then becomes 0 = F0+FX, where F0  is the

NmX 1 vector of derivatives of f0 (p) with respect to p iJ, X is an



(N-1)mXl Kuhn-Tucker vector and F is the NmX (N-l)m matrix of par-

tial derivatives of fiJ with respect to ps j, and 0 is an NmXl

vector of zeros.

Equivalently, we must have FA = -Fo, and since F is of full column

rank which is less than the number of rows, any solution to our equation

must be unique. We may express F as

-T 0 0 •.. 0

T -T 0 ..-

0 T -T ...

* T -T

0 0 ....... T

where TmX m  is an upper triangular matrix of ones. We note that F0 has

the form

-kl

-klm

ki- ki+l,1

where i1l," ,N-2.

kim k i+lm

k -1,1

L kN~l'm

It can be verified that a conditional inverse of F is given by
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T-1 0 0 ...

F= T-1 T-1 T-I ...

T T 01T
T I T -  T- ..

where

1 -1 0 0 ... 0

o 1 -1 0 ... 0

T- = 0 0 1 -1

* . 1 -1

o 0 0... 0 1

Careful calculation will verify that I = -FCF 0  is of the desired form

and a solution to equation (4.1b).

Conditions (4.1a) must hold if the Xij's are to form a Kuhn-Tucker

vector. If XiJ a 0, the k 's occurring in equation (3.7) must be

such that

(4.2) kil 2ki2  k im 0 for all i.

Conversely, if equation (4.2) holds, the Xij will be nonnegative.

The condition that X ifi * = 0 in Theorem 4.1, together with the

monotonicity requirement given in equation (4.2) leads to a characterization

for the solution provided certain indeteminate forms are properly defined.

Thus we have the following theorem.



13

Theorem 4.3. A solution to the problem of maximizing f(p) given in

equation (3.3) under the constraints in equation (3.4) are given by the

Pij'S described in equation (3.7) iff the kj Is are such that:

a) the p ij's in (3.7) satisfy the constraints in (3.h) and

b) kil 2 k12 k ... k k m > 0 for i =1,2,''',N-1, and

c) whenever k ij > k i ,J+1 it a pi l, 

i2 £=

provided sone indeterminate forms are appropriately defined.

Indeterminate forms occur when dij = 0 for i 0 < i and j ! j and

d. > 0. In this case,

N

p p . ln i=i0 i'J0 i01JO i1J0

Pioj 0  i 0 +1,j 0  " = PN,j 0 n NE n k
i=i 0 iJ 0-ki0-lJo

as mentioned earlier. Notice that this is consistent with (3.7) where we

take

N
k = n. i > ioj J

SA=i+l '1 0

since this leads to indeterminate forms.
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5. OBTAINING THE piJ

Even though Theorem 4.3 characterizes the solution to the problem,

it does not provide any means of obtaining the solution in general. How-

ever, for the case N = 2, Dykstra (1982) has found closed form expressions

for the pi as well as an efficient algorithm for calculating them. We

w ill elaborate on this procedure, and then give an iterative procedure based

only on this pairwise scheme which will converge to the general solution.

This will give us a means of solving the general problem.

To solve the pairwise problem, one need first identify the integer J0

such that d2j = O, J < JO. but d2,J >0 . Then

(5.1) In n l j + n2
J  d1J

PJ = 
+ n2

(which requires that klj 2j) for J < Jo" For Jor a : b, we let

k denote the solution to
a ,b

jZ ln(.L= +k )- = L7 (?L.J

if it exists positively and 0 otherwise. Then Dykstra has shown the pi1
J J

which maximize (3.3) subject to the linear constraints plJ P2J

are of the form

nlA - dl ki n 2j -d -klj
(5.2) PlJ= in( ) P2j = 1

nJ +k j n n2j -fk lj

l i max k for J J0. The restricted rule's of P l(t)

and P 2(t) are then given by1'2
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(5.3) P(t exp[ ij] 1 1,2.

We shall take i (t) to be as small as possible subject to the order

restrictions so as to ensure uniqueness of the estimates. Using the fact

that k 1 k12 > --- : klm, Dykstra has derived an algorithm which can be

used to compute the mle of p lJ and P2j for j = 1,. . ,m. This algorithm

is given below:

Pairwise Algorithm

Algorithm for two survival functions P (t) P 2(t):

1. Define pJ (and k lj) as in (5.1) for J < Jo"

2. Find the largest j1 2 j0  such that the k ljI > 0 which solves1  1jn
SJJ 0 nj Jo \ 2j-

is maximized. Then let klj = klj for J 0 j - Jl"

3. Find the largest J2 > J such that the k1j2 > 0 which solves

J n 1 )lj +k j2 1n -d
J=jl+l ni k j=jll 1 n 2j-k

is maximized. Let k = klj2  for j1 <  J2"

4. Continue until either Jh = m or no such positive k exists, in

which case let klj = 0 for j > Jh-l" Then piJ and Pi(t) are

given as in (5.2) and (5.3) respectively.

iU
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The N sample problem can be solved using an iterative procedure

based upon the pairwise algorithm given previously. The pairwise method

is used to massage (readjust) the data until an equilibrium point is

reached. Letting k be the estimate of kij found during the £th
ij

iteration of the algorithm, the N sample algorithm is given as follows:

1. Find the k (1)s corresponding to P P using the pairwise algo-l,j 1l

rithmn given previously.

2. Incorporate k into n and n by replacing n by

n +k (1) and n by n2  k (1)
l,j +l,j 2,j by - l,j .

3. Using the adjusted data, find the k ()'s corresponding to P k P
2 J 2 3

using the pairwise algorithm.

1
. Replace n -k) by n k (i ) and n by .i

2,j  l,j n2 ,j +J2,j -nj by 3J 2,j'

5. Continue down the chain of survival functions until the N-It h  and

Nt h  samples have been compared, and n Nl,j  has been replaced by

n (i) +k(l) and n has been replaced by n, N-k(
N-l,j N-2,j N-l,j j N N-lj

6. The procedure starts again at the top of the chain. After setting

k (1) = 0 for J= find the k (2) corresponding to P k P2J.,j 12,

using the pairwise algorithm.

7. Inorpoate k2) .(2)

(2) into the data by replacing nl~j by nl,j + k(,j

ind n +k() by n (i) W (2)
2,J 2,J 2,j 2,j - ,j"

After setting kl) = 0 for J=l,...,m, use the pairwise algorithm
2,J

to find k(2) for P2 a P3  and incorporate k(2)
2,J2 3 2,J b elcn
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n -k(2) by n (2) k(2) an n + () by
2,J 2,j n +2,j- , j  J 3  ,j

n (i) - k(2)
3,j 3,J 2,J

9. Continue down the chain, taking out the effect of the comparison
(1),

(k ) in the previous iteration, recomparing P. a P. and thenij 1 i+l'
.(2),

reincorporating the new k ( S.
ij

10. When the bottom of the chain is reached, start with this procedure

again at the top of the chain and continue until achieving convergence.

The estimated ij' s are then obtained from (3.7) and the latter part

of Theorem 4.3 with the k obtained above entered in. We will let
ij-( A ) ( A ) ,Pij indicate (3.7) with the k ii s entered.

Theorem 5.1. The procedure discussed above must yield values of Pi.

which converge for every i and J as A--. Moreover, these limiting

values solve the problem of maximizing f(p) subject to the constraints

Z= pi , for j=l,.-.,m; i=l,...,N-1.

Proof: Consider the first step of the second cycle. We obtain k(2 )

ij

by using the pairwise algorithm for P1 a P2 with the data nlj, and
(1)inpaeo nl an nj

n +k in place of n and n2,. We need to consider two cases:
2j 2j

1. If d2A 0 for A J, then k(2) = +k(l) an (1)
2£ lj = 2j 2j lj

2. Otherwise k = min max k' where k' is positive and
i "j j lJb a,b a,b

solves

b n -d +k b n (a
ln = j ln( k2 "  d22 k

n + k =a n +k I ) - kJ~a 2J +2j
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or is zero.

If k is positive and solves
a ,b

b n ].fn l +k) = jb ln n2 - - k)J=a nj + k  j=a \ 2j -

it easily follows that k' k k for all a,b, and hence
a,b a,b

k (2) .(1)

Similar arguments suffice for other i, and we may conclude that k (A)
ij

is nondecreasing in A for all i,j. Since the k are uniformly
N (A)

bounded (say by n. ) we know there exists k such that k P kj.

Finally, noting that the pi in (3.7) are continuous functions of the
,(A)

k and that the k(A correspond to solutions of the pairwise problems,
ij' ii

we can argue that the PlJ defined by (3.7) for the limiting values kij

satisfy the conditions of Theorem h.3, and hence solve the general problem.

We mention again the appealing form of the estimators. They are still

of the Kaplan-Meier form, where, heuristically, unfailed items from a

population are transferred to the next stochastically larger population.
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6. EXAMPLE

This example involves a large clinical trial carried out by the

Radiation Therapy Oncology Group cited in Kalbfleisch and Prentice (1980).

The analysis was done on only a small part of the data, and females were

deleted to make the data more homogeneous. Patients diagnosed with

squamous carcinoma of the oropharynx were classified by the degree to

which the regional lymph nodes were affected by this disease.

We let P1 be the survival function corresponding to those patients

for whom the disease had no effect on the lymph nodes. Correspondingly,

we let P2, P3, and P be the survival functions of patients with

increased effects of the disease on the lymph nodes. The data for each

survival function is given in Table 1.

Because of the nature of the disease, one would certainly expect a

linear ordering with respect to lymphatic involvement. Thus an ordering

st st
of the form P k P k P P seems inherently reasonable.

1 2 3 4

The unrestricted mle's (Kaplan-Meier) for these survival functions

are given in Table 3. Notice that with respect to the expected orderings,

there are reversals so that estimates requiring these orderings will be

different. The algorithm given in Section 5 was applied to the problem.

The kij values found in the first two iterations, in the orderiji
in which they were found, along with the essentially limiting values

obtained after 20 cycles are given in Table 2. (The procedure used here

actually worked pairwise from bottom to top rather than from top to bottom

as indicated in the paper. Of course, the limiting values will be

identical.) The values of these k(A) indicate how much "smoothing" is
io

occurring between populations.
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st at st
The mle's subject to the stochastic ordering PI k P2 k P 3 Ph4

obtained via our algorithm are displayed in Table 4. Note that the sto-

chastic ordering requirement has brought substantial change in our

estimates.

'I
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TABLE 1

Survival Times in Days of Patients with Squamous Carcinoma in the Oropharynx
with Various Degrees of Lymph Node Deterioration (+ denotes censored observation).

Degrees of deterioration of lymph nodes.

i= 1i = 2 i = 3 i = 4

167 216 105 94

238 324 222 99

276+ 338 279 112

296 347 395 127

324 599 465 134

351 763 546 147

372 929 915 192

374 1086+ 918 219

404 1092 1058+ 255

445+ 1317+ 1455+ 262
541 1609+ 1644+ 274

560 293

943 307

998+ 327

1234+ 334

1460+ 363

1823+ 407

413+

459
(The degree of deterioration (i) equals 517

N-stage tumor classification in 532

Kalbfleisch and Prentice (1980) plus one.) 544

672

696

800

914

1312+

1446+

1472+
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TABLE 2

Values of the kA obtained for survival data in Table 1.
ii

First cycle :

k(1) 2.333 j - 3 T 5 1053J 0 j > 3 T > 105

(1) 1.853 j 29 T : 374
k1) 1.205 29< j 53 374 < T ' 1609
2j 0 J > 53 T > 1609

(1) 12.853 j 9 T -92
kj - 4.380 9 < J £ 40 192 < T ' 560

0 j > 40 T > 560

Second cycle:

k (2) 3.569 j £ 3 T ! 105
3j 0 j > 3 T > 105

5.481 j 11 T 219

k(2) 3.752 11< j g 29 219 < T ' 374

2j 1.205 2 9< J 9 53 37h < T l609
0 i > 53 T > 1609

(2) 12.853 j '9 T 192
k (2 5.847 9 < j •40 192 < T 560

0 j > 40 T > 560

Twentieth cycle:

(20) 10.525 j g 3 T • 105
k3 = 1.438 3 < j g 17  105 < T r 279

0 J > 17 T > 279

12.290 j g 11 T m 219

k(20) 5.763 ii < j 29 219 < T 374
2J 1.205 29 < j r 53 374 < T 9 1609

0 j> 53 T > 1609

12.853 j g 9 T • 192
k(20) 10.371 9 < j • 20 192 < T m 307
IJ 7.253 20< J 40 307 < T 560

0 j > 40 T > 560



TABLE 3 23
Kaplan-Meier MLE's of survival functions from data

Index Time PI P2 P3 P4

0 0.0 1.0000 1.0000 1.0000 1.0000
1 94 1.0000 1.0000 1.0000 .9655
2 99 1.0000 1.0000 1.0000 .9310
3 105 1.0000 1.0000 .9091 .9310
4 112 1.0000 1.0000 .9091 .8966
5 127 1.0000 1.0000 .9091 .8621
6 134 1.0000 1.0000 .9091 .8276

7 147 1.0000 1.0000 .9091 .7931
8 167 .9412 1.0000 .9091 .7931
9 192 .9412 1.0000 .9091 .7586

10 216 .9412 .9091 .9091 .7586
11 219 .9412 .9091 .9091 .7241
12 222 .9412 .9091 .8182 .7241

13 238 .8824 .9091 .8182 .7241
14 255 .8824 .9091 .8182 .6897
15 262 .8824 .9091 .8182 .6552

16 274 .8824 .9091 .8182 .6207
17 279 .8824 .9091 .7273 .6207

18 293 .8824 .9091 .7273 .5862

19 296 .8193 .9091 .7273 .5862

20 307 .8193 .9091 .7273 .5517

21 324 .7563 .8182 .7273 .5517

22 327 .7563 .8182 .7273 .5172
23 334 .7563 .8182 .7273 4828
24 338 .7563 .7272 .7273 .4828
25 347 .7563 .6364 .7273 .4828
26 351 .6933 .6364 .7273 .4828
27 363 .6933 .6364 .7273 .4483
28 372 .6303 .6364 .7273 .4483

29 374 .5672 .6364 .7273 .4483

30 395 .5672 .6364 .6364 .4483
31 404 .5042 .6364 .6364 .4483
32 407 .5042 .6364 .6364 .4138
33 459 .5042 .6364 .6364 .3762
34 465 .5042 .6364 .5455 .3762

35 517 .5042 .6364 .5455 .3386
36 532 .5042 .6364 .5455 .3009
37 541 .4322 .6364 .5455 .3009
38 544 .4322 .6364 .5455 .2633

39 546 .4322 .6364 .4546 .2633

40 560 .3601 .6364 .4546 .2633
41 599 .3601 t5455 .4546 .2633
42 672 .3601 .5455 .4546 .2257
43 696 .3601 .5455 .4546 .1881
44 763 .3601 .4546 .4546 .1881
45 800 .3601 .4546 .4546 .1505
46 914 .3601 .4546 .4546 .1129
47 915 .3601 .4546 .3636 .1129
48 918 .3601 .4546 .2727 .1129
49 929 .3601 .3636 .2727 .1129

50 943 .2881 .3636 .2727 .1129
51 1092 .2881 .2424 .2727 .1129
52 1472 .2881 .2424 .2727 .0000
53 1609 .2881 .0000 .2727 .0000
54 1644 .2881 .0000 .0000 .0000
55 1823 .0000 .0000 .0000 .0000



TABLE 4 24

MLE's of survival functions under order restrictions from data in Table 1.

Index Time P1 2 P3 P4

O 0.0 1.0000 1.0000 1.0000 1.0000

1 94 1.0000 1.0000 1.0000 .9459
99 1.0000 1.0000 1.0000 .8918

3 105 1.0000 1.0000 .8917 .8918
4 112 1.0000 1.0000 .8917 .8569

5 127 1.0000 1.0000 .8917 .8220

6 134 1.0000 1.0000 .8917 .7871

T 147 1.0000 1.0000 .8917 .7522

8 167 .9665 .9665 .8917 .7522

9 192 .9665 .9665 .8917 .7173

O 216 .9665 .8917 .8917 .7173

10 219 .9665 .8917 .8917 .6824

12 222 .9665 .8917 .7346 .6824

13 238 .9299 .8917 .7346 .6824

14 255 .9299 .8917 .7346 .6476

15 262 .9299 .8917 .7346 .6127

16 274 .9299 .8917 .7346 .5778

17 279 .9299 .8917 .5775 .5778

18 293 .9299 .8917 .5775 .5457

19 296 .8917 .8917 .5775 .5457

20 307 .8917 .8917 .5775 .5136

21 324 .8477 .7869 .5775 .5136
22 327 .8477 .7869 .5775 .4815

23 334 .8477 .7869 .5775 .4494

24 338 .8477 .6821 .5775 .4494

25 347 .8477 .5773 .5775 .4494

26 351 .8036 .5773 .5775 .4494

27 363 .8036 .5773 .5775 .4173

28 372 .7596 .5773 .5775 .4173

29 374 .7156 .5773 .5775 .4173

30 395 .7156 .5773 .4925 .L173

31 404 .6716 .5773 .4925 .4173

32 407 .6716 .5773 .4925 .3852

33 459 .6716 .5773 .4925 .3502

34 465 .6716 .5773 .4075 .3502

5 517 .6716 .5773 .4075 .3152

36 532 .6716 .5773 .4075 .2801

37 541 .6245 .5773 .4075 .2801

38 544 .6245 .5773 .4075 .2451

39 546 .6245 .5773 .3225 .2451

40 560 .5773 .5773 .3225 .2451

41 599 .5773 .5070 .3225 .2451

42 672 .5773 .5070 .3225 .2101

43 696 .5773 .5070 .3225 .1751

44 763 .5773 .4366 .3225 .1751

45 800 .5773 .4366 .3225 .14l

46 914 .5773 .4366 .3225 .1051

47 915 .5773 .4366 .2375 .1051

48 918 .5773 .4366 .1526 .1051

49 929 .5773 .3662 .1526 .1051

50 943 .4619 .3662 .1526 .1051

51 1092 .4619 .2791 .1526 .1051

52 1472 .4619 .2791 .1526 .0000

53 1609 .4619 .1525 .1526 .0000

54 1644 .4619 .0000 .0000 .0000

55 1823 .0000 .0000 .0000 .0000
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